115 resultados para Ammonia

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated stress indicators in pacu exposed to ammonia in water under the following conditions: without NH4Cl (0.00 g/L); with 0.0078 g NH4Cl/L; and with 0.078 g NH4Cl/L (pH 8.3 and 27 ºC). After the salt dilution the water flow was interrupted and reestablished in 24 hours. Sampling occurred prior to the addition of NH4Cl (control) and after 12, 24 and 48 hours. Glycaemia increased only in fish with the highest salt concentration when compared with group control, regardless of time, and at 24 hours, regardless of treatment. Plasma ammonia, highest in fish exposed to the highest NH4Cl concentration, decreased progressively up to 48 hours. Plasma chloride only decreased in fish not exposed to salt when compared with control and osmolality increased after 24 hours. Hematocrit (Ht), number and volume of erythrocytes and hemoglobin did not change when NH4Cl was added; Ht decrease was reported after 12 hours, but it was not followed by the other blood parameters. The results show tolerance of the pacu to ammonia in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous effects of ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities on soybean (Glycine max (L.) MERR.) root growth were analyzed. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.5 mM; 1.0 mM or equimolar mixtures) for 48 h. Acting alone, both compounds (at 0.5 or 1.0 mM) decreased root length (RL), fresh weight (FW), dry weight (DW) and increased soluble POD and cell wall (CW)-bound POD activities. At 1.0 mM, FA increased (but VA decreased) the PAL activity. Acting simultaneously, the effects of the allelochemical interaction were lower than the sum of the effects of each compound tested separately, suggesting antagonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive method for determining atmospheric ammonia (NH3), using a hanging drop, is described. A colorimetric sensor is composed of two optical fibers and the source of monochromatic light implemented was a red light emitting diode (LED) (635 nm). Preliminary experiments were carried out in order to optimize the geometry of the sensor. These tests showed that the best signal absorbance was obtained using a 22 muL deionized water drop for sampling the gas and as addition of 4 muL of each of the reactants to form the blue dye (indophenol). Some important analytical parameters were also studied, including sampling time and flow rate. The analytical curve was constructed with a concentration range of 3-20 ppbv of gaseous NH3 standard. The detection limit reached was of ca 0.5 ppbv. It was observed that formaldehyde and diethylamine did not interfere. However, studies showed that hydrogen sulfide caused a negative interference of 20%, when present in the atmosphere in a concentration equal to that of NE3. The method considered here was shown to be easy to apply, making it possible to make a determination every 17 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of ammonia and pH levels on giant river prawn Macrobrachium rosenbergii larvae were evaluated to provide science-based information on safe levels of ammonia and pH for larviculture. Survival rate, developmental stage, and larval weight gain were determined for larvae kept in water with total ammonia (NH4-N) concentrations of 0, 1, 2, 4, and 8 mg\L and pH 7, 8, and 9. The trials were conducted in two phases: phase 1, larvae from stages I through VIII and phase 2, larvae from stage VIII until metamorphose. Oxygen consumption was determined for larvae in stages I and VIII at total ammonia concentrations of 0, 4, and 8 mg/L and pH 8. Survival rate up to stage VIII varied from 86 to 98% and did not differ for total ammonia concentrations in pH 7 and 8 and for 0 mg/L NH4-N in pH 9. Survival rate was significantly lower (0-20%) for total ammonia concentrations from 1 to 8 mg/L (0.43-3.41 mg/L of unionized ammonia) in pH 9. Larval stage indexes (7.9-8.0 range) and weight gain (1.572-2.931 mg range) of larvae at the end of phase 1 of the experiment did not differ for the different ammonia concentration solutions, but were significantly lower in pH 9. In phase 2, no parameter differed among treatments for pH 7 and 8; however there was total mortality at pH 9 until 96h. Respiration rates diminished when larvae were exposed to total ammonia concentrations of 4 and 8 mg/L (0.28 and 0.55 mg/L of unionized ammonia), but development remained unaltered. Therefore, M. rosenbergii larvae tolerate high levels of total ammonia, while toxicity depends primarily on unionized ammonia concentrations. In addition, alkaline pH (9) acted directly on the larvae, curbing development and causing severe mortality. Larval tolerance to high ammonia and pH levels decreases for the last zoeal stages. © Copyright by the World Aquaculture Society 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urease inhibitor (UI) and nitrification inhibitor (NI) have the potential to improve N-use efficiency of applied urea and minimize N losses via gaseous emissions of ammonia (NH 3) to the atmosphere and nitrate (NO3-) leaching into surface and ground water bodies. There is a growing interest in the formulations of coating chemical fertilizers with both UI and NI. However, limited information is available on the combined use of UI and NI applied with urea fertilizer. Therefore the aim of this study was to investigate the effects of treating urea with both UI and NI to minimize NH 3 volatilization. Two experiments were set up in volatilization chambers under controlled conditions to examine this process. In the first experiment, UR was treated with the urease inhibitor NBPT [N-(n-butyl) thiophosphoric acid triamide] at a rate of 1060 mg kg -1 urea and/or with the nitrification inhibitor DCD (dicyandiamide) at rates equivalent to 5 or 10% of the urea N. A randomized experimental design with five treatments and five replicates was used: 1) UR, 2) UR + NBPT, 3) UR + DCD 10%, 4) UR + NBPT + DCD 5%, and 5) UR + NBPT + DCD 10%. The fertilizer treatments were applied to the surface of an acidic Red Latosol soil moistened to 60% of the maximum water retention and placed inside volatilization chambers. Controls chambers were added to allow for NH 3 volatilized from unfertilized soil or contained in the air that swept over the soil surface. The second experiment had an additional treatment with surface-applied DCD. The chambers were glass vessels (1.5 L) fit with air inlet and outlet tubings to allow air to pass over the soil. Ammonia volatilized was swept and carried to a flask containing a boric acid solution to trap the gas and then measured daily by titration with a standardized H 2SO 4 solution. Continuous measurements were recorded for 19 and 23 days for the first and second experiment, respectively. The soil samples were then analyzed for UR-, NH4+-, and NO3--N. Losses of NH 3 by volatilization with unamended UR ranged from 28 to 37% of the applied N, with peak of losses observed the third day after fertilization. NBPT delayed the peak of NH 3 losses due to urease inhibition and reduced NH 3 volatilization between 54 and 78% when compared with untreated UR. Up to 10 days after the fertilizer application, NH 3 losses had not been affected by DCD in the UR or the UR + NBPT treatments; thereafter, NH 3 volatilization tended to decrease, but not when DCD was present. As a consequence, the addition of DCD caused a 5-16% increase in NH 3 volatilization losses of the fertilizer N applied as UR from both the UR and the UR + NBPT treatments. Because the effectiveness of NBPT to inhibit soil urease activity was strong only in the first week, it could be concluded that DCD did not affect the action of NBPT but rather, enhanced volatilization losses by maintaining higher soil NH4+ concentration and pH for a longer time. Depending on the combination of factors influencing NH 3 volatilization, DCD could even offset the beneficial effect of NBPT in reducing NH 3 volatilization losses. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaseous losses are the main factors affecting the efficiency of nitrogenous fertilizers in pastures. To evaluate NH3-N volatilization losses in Tanzania grass fertilized with urea in autumn, spring and summer, a completely randomized design with repeated measurements over time and fifteen replicates was used. Plots were represented by urea levels (50; 100 and 150 kg ha-1 N) and subplots by time after fertilization (1; 2; 3; 6; 9; 12 and 15 days). The interaction between fertilization leveland time after urea application was significant for the accumulated NH3-N volatilization. Urea application leads to higher percentage N losses in the first three days after application. The average cumulative NH3- N loss for the three occasions (different seasons of the year) was 28%, 20% and 16% of N applied for fertilizer doses of 50; 100 and 150 kg ha-1 of N, respectively. The season of the year influenced NH3-N loss pattern and volume, with the lowest values recorded in spring, followed by summer and autumn. The cumulative NH3-N volatilization loss varies from 78 to 90% up to the third day after application of the total NNH3 loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanabara Bay (GB) comprises of estuarine and marine environments of high ecological and socio-economic relevance, together with port, industrial and urban areas. The anthropogenic activities produce environmental impacts, including the aquatic pollution. The sediment quality assessment is important to evaluate the effects of contamination, once sediments are a repository for most of the contaminants. In this Study, the quality of sediments from GB was evaluated, in rainy and dry periods, throughout the employment of acute toxicity tests with the amphipod Tiburonella viscana, and chronic bioassays with embryos of the sea-urchin Lytechinus variegatus. In the dry period, acute toxicity was found in the sediments from stations 1, 2 3 (NW) and 7 (near Guapimirim Environmental Protection Area). The bioassays with liquid phases showed effects, but were strongly influenced by the unionized ammonia levels, which were high in this period. In the rainy period, acute toxicity was found in sediments samples from stations 1, 2, 3, 6, 8, 10, 11, 12 and 15. Chronic toxicity could be clearly detected, as ammonia concentrations tended to be low in the most part of the samples. The results showed that the sediment toxicity is influenced by precipitation rates, which increase the input of contaminants to the Bay, and also allowed subdividing GB in three main zones: northwest (stations 1, 2, 3, 5), northeast (stations 6, 7, 8, 9) and centre-south (stations 10, 11, 12, 13, 14, 15). Results also showed that the quality of GB sediments is poor, and that toxicity tests could determine the combined effects of pollutants.